

A Look at the Dijet Mass Resolution Using CMSSW 1.3.4

US CMS First Physics Workshop Oct 11 – 13, 2007

Frank Chlebana, Fermilab

Introduction

Updating previous study using newer software and simulation

- Using CMSSW 1.3.4
- Z prime to dijet sample
- About 35000 events at three different mass points 700, 2000, 5000 GeV

Zprime samples not available in CMSSW 1.6.x

⇒ Need to run on cmsuaf

Parton: Generated Level

GenJet: Algorithm run on stable particles

CaloJet: Algorithm run on calorimeter energy deposits

CorrCaloJets: Jet corrections applied to CalJet

What We Measure

Going from particles to the Calorimeter involves detector effects such as resolution, undetected energy, smearing

Going from partons to particles involves QCD + fragmentation and depends on modeling

What We Measure

- Looked at the two leading jets
- No matching requirement

Using:

Apply jet corrections on the fly:

midPointCone5CaloJets midPointCone5GenJets MCJetCorrectorMcone5

Code location:

/uscms_data/d1/chlebana/CMSSW_1_3_4/src/ RecoJets/JetAnalyzers/src/JetCompare.cc

Dijet Mass Comparison

Dijet mass comparison of

- GenJet
- CaloJet
- Corrected CaloJet

Expanding the η Range

Original studies were done for $|\eta| < 1.0$

Resolution shown for three regions: $|\eta| < 1.0$, $|\eta| < 1.3$, and $|\eta| < 4.0$

→ Similar resolutions for the different psuedo rapidity regions

Resolution in Expanded η Region

$$res = p0 + \frac{p1}{mass}$$

Points are fit to the function:

Resolution in expanded η region is comparable to the original region

Mass Resolution: 0.7 TeV

Mass Resolution: 2 TeV

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

Corrected CaloJet: Zp Mass (GeV)

50

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

CaloJet: Zp Mass (GeV)

Mass Resolution: 5 TeV

Dijet Mass Resolution

See better resolutions compared with the old study

Raw jet resolutions are comparable to the corrected jet resolutions

Could look for bumps using a smooth fit to the raw distribution

Dijet Mass Resolution

Intrinsic Resolution

- GenJet/Parton
- CorrCaloJet/Parton
- CorrCaloJet/GenJet

Intrinsic Resolution

Dijet Mass Resolution

Mass error taken from the σ of the fit Error on σ /mean is propagated from the fit

Improving the Resolution

- Jet corrections sets the energy scale but only <u>modestly</u> improved the energy resolution
- Need to include additional information to further improve the mass resolution
 - Use tracking information to reconstruct the hadronic component of the jet

Conclusions

- Resolution study has been updated using more statistics and CMSSW 1.3.4
 - Observe better resolutions than were seen with previous studies
- See similar resolutions for the expanded pseudo rapidity region (|η| < 1.0 → |η| < 1.3)
 - Able to include more data!
- Raw jet resolutions comparable to corrected jet resolutions
 - For bump searches, can start with uncorrected mjj and compare to a smooth parameterization of the data

Additional Slides

